体育彩票走势图排五
網站地圖 原創論文網,覆蓋經濟,法律,醫學,建筑,藝術等800余專業,提供60萬篇論文資料免費參考
主要服務:論文發表、論文修改服務,覆蓋專業有:經濟、法律、體育、建筑、土木、管理、英語、藝術、計算機、生物、通訊、社會、文學、農業、企業

果樹多倍體砧木主要表現與特異性狀形成機理

來源:原創論文網 添加時間:2019-10-12

  摘    要: 果樹多倍體砧木樹形較矮,對干旱、鹽害、缺鐵等逆境的耐受能力較強。多倍體作砧木可誘導植株矮化,還能提高植株對干旱、缺鐵、低溫、鹽害以及重金屬等非生物脅迫的耐受能力。目前,在柑橘、櫻桃、蘋果的生產中已得到應用。然而多倍體砧木育性低、遺傳不穩定,繁育受到限制。雖然無性繁殖、無融合生殖以及有性生殖均有應用,但各有不足,有待改進。多倍體砧木部分特異性狀的形成機理得到研究,這些特性主要與其解剖結構、脅迫響應相關基因的表達和代謝產物有關,其中脫落酸(ABA)可能參與調節樹體矮化,在耐受干旱脅迫中起重要作用。總體上,多倍體砧木的研究和應用均處于起步階段,后續應培育更多新類型,加快推廣應用,并加強繁育研究和特異性狀形成機理的研究。

  關鍵詞: 果樹; 多倍體砧木; 矮化; 抗逆性;

  Abstract: Polyploid rootstocks have some specific and excellent traits such as dwarf, drought tolerance, salt tolerance and iron-deficiency tolerance. As being used as rootstock, polyploid could induce plants dwarf and enhance tolerance of trees to abiotic stress, such as drought tolerance, iron-deficiency, salt, heavy metal and chill. In citrus, cherry and apple, some polyploid rootstocks have been applied in production. Nonetheless, low fertility and genetic instability limit reproduction of polyploid rootstock. Although vegetative propagation, apomixes and sexual reproduction have been employed, they all have their own disadvantages, need improvements. Formation mechanisms of some specific traits of polyploid rootstocks have been researched, and these traits were concerned with their anatomical structure, expression of some stress resistance-related genes and metabolites. Abscisic acid (ABA) may take part in plant dwarfing regulation and plays an important role in drought tolerance of polyploid rootstock. In an overall view, application and researches of polyploid rootstock are both at the starting stage. In the subsequent processes, more new polyploid rootstocks should be breed, popularization and application should be speed up, researches on reproduction methods and specific traits formation mechanisms should be reinforced.

  Keyword: fruit tree; polyploid rootstock; dwarfing; stress tolerance;

  較多植物的基因組在進化過程中經歷過多倍化(Masterson,1994;Cui et al.,2006;Wood et al.,2009)。農業生產中,大量多倍體被直接作為作物品種,如:香蕉(Musa)為三倍體(2n=3x=33),煙草(Nicotinan tabacum)為四倍體(2n=4x=48),普通小麥(Triticum aestivum)為六倍體(2n=6x=42),鳳梨草莓(Fragaria × ananassa)為八倍體(2n=8x=56)。多倍體對逆境的耐受能力強,更能適應氣候和環境的變化,在進化中占優勢,且有利于穩定農作物產量(Comai,2005;Udall & Wendel,2006;Bhardwaj,2015);多倍體植株粗壯、器官巨大、育性較低,可提高農作物的產量和可食率。

  近年來,果樹多倍體砧木矮化樹形、耐受非生物脅迫的性狀得到重視,且在研究和應用方面取得了一定的進展。基于此,本文對果樹多倍體砧木的研究現狀進行分析,并對后續研究進行展望,以供砧木育種工作者參考。
 

果樹多倍體砧木主要表現與特異性狀形成機理
 

  1、 果樹多倍體砧木的主要表現

  1.1、多倍體砧木的特異性狀

  (1)樹形較矮。節間較短是多倍體植物的主要特征之一,多倍體砧木也有類似表現。葡萄(Vitis)砧木品種‘Gloire de Montpellier’、‘Rupestris St. George’和‘Couderc 3309’的四倍體與其二倍體相比,根較短、較粗,且較緊湊,芽和節間也較短,生長勢較弱(Motosugi et al.,2002);三倍體葡萄砧木‘E-1’的植株和根的形態介于親本‘5BB’的二倍體與四倍體之間(Motosugi & Naruo,2003)。柑橘(Citrus)砧木‘Rangpur lime’四倍體與二倍體相比葉片較厚,根、莖較粗(Allario et al.,2011)。蘋果(Malus pumila)砧木珠美海棠(Malus zumi)四倍體與二倍體相比,植株顯著較矮,莖干較細,分枝數明顯減少(郭玉,2012);蘋果砧木品種SH40也有相同表現(賈林光,2015)。這表明在不同的果樹類型中,多倍體砧木均具有樹形矮小的特點。

  (2)對逆境的耐受能力較強。柑橘砧木‘Rangpur lime’的四倍體植株對水分虧缺的耐受能力強于二倍體(Allario,2009);‘Volkamer lemon’四倍體植株在干旱條件下細胞膜的穩定性更強(Vieira et al.,2016)。柑橘 ‘Pomeroy Poncirus trifoliate’、‘Cleopatra Mandarin’、‘Commune Mandarin’、‘Willow-Leaf mandarin’、‘Carrizo’四倍體以及Poncirus trifoliate-Citrus deliciosa體細胞雜種的耐鹽害能力比二倍體強(Basel et al.,2004;Mouhaya et al.,2008;Saleh et al.,2008; Ruiz et al.,2012);‘寒富’蘋果四倍體的耐鹽能力也強于二倍體(薛浩 等,2015)。一些砧木的多倍體類型還有較為特殊的表現,如柑橘體細胞雜種四倍體‘Tetrazyg’對象蟲/疫霉復合體的耐受能力較強,發病率低(Grosser et al.,2003);四倍體‘Carrizo’可以耐受硼過量(Ruiz et al.,2016),對缺鐵也有一定的耐受能力(Ruiz et al.,2012);來源于小金海棠(Malus xiaojinensis,2n = 4x = 68)實生后代的四倍體蘋果砧木‘中砧1號’也具有較強的耐缺鐵能力(韓振海 等,2013)。

  多倍體砧木特異性狀的相關報道較少,但部分株系在樹形矮化以及耐受逆境如干旱、鹽害、硼過量及缺鐵等方面有較好的表現,其中柑橘多倍體砧木的報道稍多,如:‘Carrizo’的研究已經涉及多個方面,其它作物類型還有待加強。

  1.2、 多倍體作砧木誘導植株產生優良特異性狀

  (1)樹形矮化。報道顯示,多倍體作砧木的葡萄植株較矮,生長勢稍弱,分枝減少,根系短粗且較為緊湊(Motosugi and Naruo, 2003; Motosugi et al.,2007;Gao-Takai et al.,2017)。著名的櫻桃(Cerasus)砧木品種‘吉塞拉’為三倍體,矮化作用明顯,應用較廣(劉慶忠和王俠禮,2000;Webster et al.,2000;劉慶忠 等,2001)。柑橘異源多倍體砧木已用于生產以控制植株樹形(Grosser et al.,2011;Hussain et al.,2012)。

  (2)對非生物脅迫的耐受能力較強。部分多倍體對非生物脅迫具較強的耐受能力,這種能力在以其為砧木的植株中也有表現。如:四倍體‘Rangpur lime’作砧木、‘Valencia Delta sweet orange’作接穗,植株的耐旱能力明顯比二倍體作砧木強(Allario et a.,2008;Allario et al.,2013);以‘中砧1號’(2n = 4x = 68)為砧木的蘋果樹在常出現缺鐵黃化現象的土壤中能正常生長,且無缺鐵黃化現象(韓振海 等,2013;余俊 等,2015)。部分多倍體的耐受能力雖未見報道,但以其為砧木的植株卻具有較強的耐受能力。如:異源四倍體砧木嫁接‘Valencia’甜橙(Citrus sinensis),整個植株的耐鹽能力得到提升(Grosser,2012);Balal等(2017)的研究發現,嫁接在四倍體枳(Poncirus trifoliata)、Citrus reshni和檸檬(Citrus limon)上的‘Kinnow’對重金屬Cr的耐受能力強于嫁接在二倍體上的植株;嫁接在四倍體‘Carrizo’上的‘Clementine’比嫁接在二倍體‘Carrizo’上的植株具更強的低溫耐受能力(Oustric et al.,2017)。

  (3)高肥效。擬南芥(Arabidopsis thaliana)四倍體對鉀的吸收能力強于二倍體。以四倍體作砧木,植株的鉀吸收能力與四倍體植株相近,均強于二倍體植株和二倍體作砧木的植株(Chao et al.,2013)。雖然在果樹中沒有類似報道,但可以借鑒試驗。

  總體看來,以多倍體作砧木的植株在樹形矮化、耐缺鐵方面的表現較突出,在櫻桃、柑橘、蘋果的生產中已得到應用。以多倍體為砧木的植株在耐受干旱、鹽害、重金屬和低溫等非生物脅迫方面也有積極表現,可在生產中嘗試應用。值得注意的是,擬南芥四倍體作砧木具有高肥效的特點,果樹中可以參考試驗以提高K肥的利用效率。

  1.3、 多倍體作砧木的主要障礙

  育性低、遺傳不穩定是多倍體最突出的特點。所以,繁殖力低及后代性狀分離是多倍體作砧木的主要障礙。目前,多倍體砧木可通過以下幾種方式繁育:

  (1)無性繁殖。櫻桃三倍體砧木品種‘吉塞拉’的繁殖主要通過扦插和組織培養(劉慶忠和王俠禮,2000;劉慶忠 等,2000,2001,2006;Vujovi? et al,2012)。但扦插苗、組培苗的根系多為須根系,其延伸至深層土壤的能力較直根系弱,樹體固地性差、易倒伏,且不耐旱。部分果樹組織培養可通過胚狀體途徑成苗(冀愛青和吳國良,2011),其根與實生苗的根相近,為直根系。但較多果樹組織培養的難度較大,胚狀體途徑再生植株更不易實現。蘋果、梨(Pyrus)等果樹中有使用矮化中間砧的記錄(賈敬賢 等,1991;陳長藍和龔欣,1996;閆樹堂 等,2005;張強 等,2013),故也可采用嫁接的方式繁育多倍體砧木。但多倍體作中間砧,其根系的優良性狀以及與根系相關的其它優良性狀可能無法利用。部分果樹,如棗(Ziziphus jujuba)、李(Prunus salicina)、桃(Amygdalus persica)等可通過分蘗繁殖,但繁殖系數較低,短期內難以獲得大量群體。

  (2)無融合生殖。無融合生殖中有一類胚為體胚,其性狀與親本一致,可保持多倍體的優良性狀。柑橘的珠心胚即為此類,異源四倍體砧木可通過珠心胚繁育(Grosser & Gmitter,2011)。可是柑橘的體胚發育依賴有性胚發育,母本需具有一定育性,故育性較低的多倍體如三倍體難以此方式繁育。蘋果砧木平邑甜茶(Malus hupehensis (Pamp) Rehd.)雖為三倍體(2n = 3x = 51),但其體胚發育不依賴有性胚發育(董文軒 等,1996;劉丹丹,2012),故平邑甜茶在蘋果生產中已有一定面積應用。然而,能進行無融合生殖的果樹種類較少,應用范圍有限。

  (3)有性生殖。部分四倍體能自交產生四倍體,與二倍體雜交可產生三倍體(Grosser & Gmitter,2011;梁森林 等,2018),通過倍性檢測可獲得倍性一致的群體;由親緣關系較遠的物種形成或合成的異源四倍體育性較高,后代倍性和性狀均較一致。中華獼猴桃(Actinidia chinensis)同源四倍體能快速二倍體化,染色體聯會以二價體為主,后代的倍性較均一(饒靜云 等,2012;Wu et al.,2014);美味獼猴桃是中華獼猴桃同源六倍體,其減數分裂正常,后代倍性也較穩定(Mertten et al.,2012)。所以,單從倍性一致性的角度看,多倍體通過有性途徑進行繁育的難度不大。但果樹多為雜合基因型,有性后代易發生性狀分離,親本性狀難以保持。

  由此可見,雖然多倍體砧木的繁育方式較多,但各有利弊。須對其中較具優勢的繁育方法進行改良以適應較多種類的果樹。

  2、果樹多倍體砧木及嫁接植株特異性狀形成機理

  2.1、 多倍體砧木特異性狀形成機理

  2.1.1、 特異形態形成機理

  對多倍體砧木特異形態形成機理的研究較少且不深入,僅見少數形態學的分析。如柑橘砧木‘Rangpur lime’四倍體的葉片顯著較二倍體的葉片厚,這與四倍體的表皮細胞、柵欄組織細胞以及海綿組織細胞體積較大有關;四倍體根的直徑顯著大于二倍體,這與四倍體根的表皮細胞、皮層細胞較大有關;而莖部不同組織的橫切面積無顯著差異,但四倍體莖部不同組織的細胞明顯較大(Allario et al.,2011)。通常細胞的體積隨倍性增加而增加(Tsukaya,2013),細胞變大可直接導致器官變大,這可能是多倍體一般表現器官巨大的原因(Sugiyama,2005)。但多倍體砧木節間較短、分枝少,目前對其形成機理的研究還未見系統報道。研究發現,‘Rangpur lime’四倍體植株根部合成的ABA較二倍體多,并經長距離運輸到達接穗,使接穗的ABA含量升高(Allario et al.,2013),這可能與植株矮化和分枝數減少有關(Arney & Mitchell,1969;Kamiński et al.,1971;牛自勉和梁德聲,1991)。目前,ABA負向調節植株分枝已在擬南芥中得到證實(Yao & Finlayson,2015);對葡萄的研究也表明,ABA在側芽休眠中有積極作用(Vergara et al.,2017)。

  為解釋倍性增加導致植物發育期延長、較高倍性材料株型變小的現象,學者們引入了補償效應(Comai,2005;Tsukaya,2008):1、細胞變大,內含物增多,其對物質和能量的消耗也相應增多,為維持整體平衡,只能以減慢細胞分裂來補償;2、細胞增大使細胞中與分裂相關的部分蛋白須在較大空間行使功能,由此增大了其功能實現的壓力,故細胞分裂被限制。多倍體節間縮短和分枝減少也可引用補償效應解釋,即葉片、花及果實變大的物質、能量消耗由節間縮短、分枝數減少來補償。

  此外,基因組多倍化后大量基因冗余,植物會選擇性地沉默一些基因,以補償負面影響(Pikaard,2001;Madlung et al.,2005),部分基因的沉默可能會使細胞數量減少、器官變小(Kurepa & Smalle,2009)。

  2.1.2、特異生理特征形成機理

  目前,對多倍體砧木特異生理特征形成機理的研究主要涉及耐旱、耐鹽以及耐缺鐵。

  通過代謝組分析發現,資陽香橙(Citrus junos cv. Ziyang xiangcheng)四倍體葉片中積累的初級代謝產物較二倍體多,一些與脅迫相關的產物如蔗糖、脯氨酸、γ-氨基丁酸在四倍體中顯著增加,而次級代謝產物的積累被抑制,總計33種黃酮類物質下調,6種上調;轉錄組分析顯示,202個基因(占檢測基因總數的0.8%)的表達量在二倍體和四倍體間存在顯著差異,而這些基因與鹽脅迫、水分脅迫和ABA脅迫響應高度相關(Tan et al.,2015)。而‘Rangpur lime’四倍體與二倍體的差異則是基因非顯著差異表達的結果(Allario et al.,2011):二者差異表達的基因少于1%,最大表達量差異在2倍以內,6個基因上調,其中5個與干旱脅迫有關。

  中度鹽脅迫時,大翼橙(Citrus macrophylla)二倍體葉片中Cl-和Na+濃度較高,而四倍體葉片中K+濃度較高,這說明鹽脅迫對二倍體的離子吸收和運輸產生了較大影響,而四倍體受到的影響較小;高鹽濃度下,二倍體葉片受到較大損害,其Cl-濃度高于四倍體,而Na+濃度則無顯著差異(Ruiz et al.,2016b);‘Carrizo’的表現與大翼橙相近(Ruiz et al.,2016c);對蘿卜(Raphanus sativus)的研究也可作參考:四倍體較二倍體更耐鹽,四倍體根部的K+/Na+比更高(Meng et al.,2011)。可見,多倍體的耐鹽能力與其對K+、Na+的吸收和運輸密切相關。一些常見的蛋白、抗氧化相關蛋白以及水分運輸相關的蛋白也參與了多倍體砧木耐鹽性的調節。鹽脅迫條件下,耐鹽柑橘品種‘Cleopatra’二倍體和四倍體以及‘Willow leaf mandarin’的四倍體葉片中幾種常見蛋白的表達量均較高,抗氧化酶以及熱激蛋白在四倍體中的表達量也較高,這些蛋白可能在耐鹽脅迫中起重要作用,其中抗氧化酶和熱激蛋白的表達量與倍性相關(Podda et al.,2013);四倍體‘寒富’蘋果較強的耐鹽性可能與鹽脅迫下水通道相關蛋白基因的表達水平較高有關(薛浩 等,2015)。

  小金海棠耐缺鐵機理研究已取得較多成果。缺鐵條件下,小金海棠根部分泌H+的能力被激活,三價鐵螯合物還原酶活性增加(李凌,2002)。多個與鐵高效相關的蛋白被鑒定,主要包括物質、能量代謝相關蛋白和脅迫應答相關蛋白,如UDP-葡萄糖焦磷酸化酶、果糖激酶、NAD依賴的異檸檬酸脫氫酶、S-腺苷甲硫氨酸合成酶、單脫氫抗壞血酸還原酶、維生素B6合成酶亞基、Pir76b蛋白、兒茶酚氧位甲基轉移酶等(王晶瑩,2006)。多個研究(王少甲,2014;潘海發,2015;劉偉,2017;孫朝華,2017)綜合表明:缺鐵脅迫下,小金海棠首先增強鐵的吸收,再加強鐵的再利用過程,乙烯以及活性氧(ROS)信號途徑在缺鐵脅迫早期進行響應;一些相關蛋白和基因的功能得到初步驗證,如MxNRAMP1蛋白的鐵轉運機制,ERF4/ERF72和MdROP1的缺鐵應答功能。此外,NO可能在小金海棠缺鐵響應中起重要作用(李玉娜,2016)。

  2.2、多倍體砧木誘導接穗產生特異性狀的機理

  由于Cr元素被阻隔在根部,未運輸至莖和葉,故四倍體枳、Citrus reshni和檸檬作砧木的‘Kinnow mandarin’對重金屬Cr的耐受能力較強(Balal et al.,2017),但阻隔機理還有待進一步研究。此外,Cr脅迫條件下,四倍體作砧的‘Kinnow mandarin’的糖酵解作用較強(Shahid et al,2018a),葉片中多胺和酚含量也較高,這可能與Cr耐受能力有關(Shahid et al,2018b)。

  干旱條件下,四倍體‘Rangpur lime’作砧木的植株的氣孔電導率較低,葉片和根部的ABA含量較高,根部干旱脅迫相關基因的表達量也較高,其中包括調節ABA合成的基因CsNCED1。這表明,四倍體中干旱脅迫相關基因的表達模式被修改,以調節ABA的合成和長距離運輸(Allario et al.,2013)。進一步分析(Dutrad et al.,2017)顯示,不同倍性‘Rangpur lime’作砧木應對干旱脅迫的策略不同:與二倍體作砧木相比,四倍體作砧木植株的ABA含量更高,調節氣孔關閉,從而降低了蒸騰導致的水分損失,這與類胡蘿卜素/ABA生物合成相關的基因表達相關,故四倍體作砧木的植株失水更少;四倍體作砧木植株葉片的蠟含量較高,這在一定程度上增加了四倍體作砧木植株的抗旱能力。

  低溫條件下,四倍體‘Carrizo’作砧的‘Clementine’的凈光合效率、氣孔導度、葉綠素熒光、淀粉水平降低的幅度均比二倍體作砧木的植株小,丙二醛含量和電解質滲漏也處于較低水平;過氧化氫酶、抗壞血酸過氧化物酶以及脫氧抗壞血酸還原酶的比活度較高。這表明,‘Carrizo’四倍體增強‘Clementine’的抗寒能力主要得益于部分抗氧化系統的作用(Oustric et al.,2017)。

  3 、果樹多倍體砧木的研究展望

  總體看來,多倍體作砧木具有一定的優勢,但其研究和應用均處于起步階段,廣度和深度有限。建議后續研究如下:

  (1)開展更多的多倍體砧木試驗并加快推廣應用。目前僅見柑橘、櫻桃和蘋果應用多倍體作砧木進行生產,且類型或品種較少,應用的范圍也不廣,較多具特異性狀的多倍體砧木仍處于試驗階段。故首先應加快優良多倍體砧木的推廣、應用,如蘋果四倍體矮化砧木類型,柑橘四倍體耐旱、耐鹽、耐寒砧木類型等;其次,在已有多倍體砧木的果樹中試驗更多多倍體基因型,獲得新的優良類型;第三,可在未見多倍體作砧木的果樹中開展多倍體砧木試驗。樹形矮化在多倍體中較為普遍,目前勞動力缺乏,對省力化栽培有極大需求,可重點在大型果樹中開發和應用多倍體矮化砧木。此外,多倍體在抗逆性方面有較為突出的表現,也可作為后續多倍體砧木開發的主要目標,特別是耐旱特性在南方山區和北方地區有較為廣闊的應用前景,耐寒特性對柑橘在高海拔地區、高緯度地區的生產也較為有利。

  (2)加強多倍體砧木繁育研究。有性后代倍性和性狀不穩定,故無性途徑可作為果樹多倍體砧木繁育的主要方法。扦插苗、組培苗的須根系,或可通過根系整理、限制生長等措施改善其固地性較差、不耐旱等缺點(史滟滪 等,2015)。組織培養過程中的胚狀體成苗也值得廣泛研究和應用。可進行無融合生殖的果樹種類較少,須在對無融合生殖特別是專性無融合生殖的發生機理進行深入研究的基礎上,通過雜交轉育、轉基因以及基因編輯等手段對其它植物種類進行改良。

  (3)加強多倍體作砧木的砧穗互作及嫁接植株特異性狀形成機理研究。多倍體樹體矮化的形成機理還未見報道,有待研究;耐鹽、耐旱、耐低溫、耐受重金屬機理的研究雖有涉及,但并不系統和深入,需進一步加強。小金海棠耐缺鐵機理的研究有一定的進展,但其機理在多倍體耐缺鐵中是否具有共性還不清楚。其它性狀如高肥效可在果樹中試驗證實,并對其機理進行研究,以減少鉀肥施用量,節約成本。由于樹體矮化是多倍體較為普遍的特征,具有共性,且在應用中有較高價值,可作為研究的重點之一;耐鹽、耐旱、耐缺鐵、耐低溫等特性具有較廣泛的應用需求,也可作為研究的主要內容。值得注意的是,ABA在多倍體砧木抗逆中起重要作用,也可能參與調控樹體矮化,故應對多倍體砧木中ABA的生理作用及其機理進行較為深入而全面的分析。

  參考文獻

  [1] Allario T,Mouhaya W,Javier B,Iglesias D,Colmenero-Flores J M,Jaffuel S,Pina J A,Talon M,Navarro L,Ollitrault P,Morillon R. 2008. Citrus tetraploid rootstocks are more tolerant to water deficit than diploid//Prohens J,Badenes M L. Modem variety breeding for present and future needs. Valencia:Editorial Universidad Politécnica de Valencia.
  [2] Allario T,Brumos J,Colmenero J M,Iglesias D,Juarez J,Pina J A,Talon M,Navarro L,Ollitrault P,Morillon R. 2009. Autotetraploid Citrus limonia rootstocks are more tolerant to water deficit than parentalal diploids//International Conference on Polyploidy, Hybridization and Biodiversity, Saint-Malo, Franc.
  [3] Allario T,Brumos J,Colmenero-Flores J M,Tadeo F,Froelicher Y,Talon M,Navarro L,Ollitrault P,Morillon R. 2011. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany,62 (8):2507 - 2509.
  [4] Allario T,Brumos J,Colmenero-Flores J M,Iglesias D J,Pina J A,Navarro L,Talon M,Ollitrault P,Morillon R. 2013. Tetraploid Rangpur lime rootstock increases drought tolerance via enhanced constitutive root abscisic acid production. Plant Cell & Environment,36 (4):856 - 868.
  [5] Arney S E,Mitchell D L. 1969. The effect of abscisic acid on stem elongation and correlative inhibition. New Phytologist,68(4):1001-1015.
  [6] Balal R M,Shahid M A,Vincent C,Zotarelli L,Liu G,Mattson N S,Rathinasabapathi B,Martínez-Nicolas J J,Garcia-Sanchez F. 2017. Kinnow mandarin plants grafted on tetraploid rootstocks are more tolerant to Cr-toxicity than those grafted on its diploids one. Environmental & Experimental Botany,140:8 - 18.
  [7] Basel S,Patrick O,Rapha?l M. 2004. Effect of salt stress in diploid and tetraploid citrus rootstocks//10th Congress International Society of Citric,Agadir,Maroc.
  [8] Bharadwaj D N. 2015. Polyploidy in crop improvement and evolution//Bahadur B,Rajam M V,Sahijram L,Krishnamurthy K V. Plant Biology and Biotechnology. India:India Springer:619 - 638.
  [9] Chao D Y,Dilkes B,Luo H,Douglas A,Yakubova E,Lahner B,Salt D E. 2013. Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science,341 (6146):658 - 659.
  [10] Chen C L,Gong X. 1996. Early yield and dwarfing performance test of pear by using intermediate stock. China Fruit,(3):24 - 25. (in Chinese)
  [11] Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics,6 (11):836 - 846.
  [12] Cui L,Wall P K,Leebens-Mack J H,Lindsay B G,Soltis D E,Doyle J J,Soltis P S,Carlson J E,Arumuganathan K,Barakat A ,Albert V A,Ma H,de Pamphilis C W. 2006. Widespread genome duplications throughout the history of flowering plants. Genome Research,16 (6):738 - 748.
  [13] Dong Wen-xuan,Jing Shi-xi,Xuan Jing-hong. 1996. Research and utilization of the apomictic characteristic in Malus-a literature review. Acta Horticulturae Sinica,23 (4):343 - 348. (in Chinese)
  [14] Dutra de Souza J,de Andrade Silva E M,Coelho Filho M A,Morillon R,Bonatto D,Micheli F,da Silva Gesteira A. 2017. Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PloS One,12 (5):e0177993.
  [15] Guo Y. Morphological,physiological and biochemical characteristics of tetraploid apple rootstock and its effect on scion[M. D. Dissertation]. 2012. Baoding:Hebei Agricultural University. (in Chinese)
  [16] Gao-Takai M,Katayama-Ikegami A,Nakano S,Matsuda K,Motosugi H. 2017. Vegetative growth and fruit quality of 'Ruby Roman' grapevines grafted on two species of rootstock and their tetraploids. Horticulture Journal,86 (2):171 - 182.
  [17] Grosser J W,Graham J H, McCoy C W,Hoyte A,Rubio H M,Bright D B,Chandler J L. 2003. Development of “Tetrazyg” rootstocks tolerant of the Diaprepes/ Phytophthora complex under greenhouse conditions//Proceedings of the Florida State Horticultural Society, (116):263 - 267.
  [18] Grosser J W,Chandler J L,Ling P,Barthe G A. 2011. New somatic hybrid rootstock candidates for tree-size control and high juice quality//Proceedings of the Florida State Horticultural Society,(124):131 - 135.
  [19] Grosser J W,Gmitter Jr F G. 2011. Protoplast fusion for production of tetraploids and triploids:applications for scion and rootstock breeding in citrus. Plant Cell Tissue & Organ Culture,104 (3):343 - 357.
  [20] Grosser J W,Omar A A,Gmitter J A. 2012. Salinity tolerance of ‘Valencia’ orange trees on allotetraploid rootstocks//Proceedings of the Florida State Horticultural Society,(125):50 - 55.
  [21] Han Zhen-hai,Wang Yi,Zhang Xin-zhong,Xu Xue-feng,Sun Yang-wu, Shen Jun. 2013. Apple rootstock new variety Chistock #1. Journal of Agricultural Biotechnology,21 (7):879 - 882. (in Chinese)
  [22] Hussain S,Curk F,Dhuique-Mayer C,Urbanc L,Ollitraultd P,Luroa F,Morillon R. 2012. Autotetraploid trifoliate orange (Poncirus trifoliata) rootstocks do not impact clementine quality but reduce fruit yields and highly modify rootstock/scion physiology. Scientia Horticulturae,134 (2):100 - 107.
  [23] Ji Ai-qing, Wu Guo-liang. 2011. Advance in research on somatic embryogenesis of fruit tree. Northern Horticulture, (13): 188-193.
  [24] Jia Jing-xian,Chen Chang-lan,Gong Xin. 1991. Study on dwarfing effect and its mechanism of pear dwarfing intermediate stock PDR54. China Fruit,1991(1):13-15. (in Chinese)
  [25] Jia L G. 2015. Characteristics of tretraploid SH40 apple dwarfing rootstock and its effect on the growth and physiological metabolism of scion[M. D. Dissertation]. Baoding:Hebei Agricultural University. (in Chinese)
  [26] Kamiński W,Rudnicki R,Pieni??ek J. 1971. Some growth responses of apple seedlings to abscisic acid and growth stimulators. 13 (2):128 - 132
  [27] Kurepa J,Smalle J A. Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs. Plant Physiology, 150 (1):178-189.
  [28] Li Ling. 2001. Physiological and molecular basis for resistance to iron chlorosis in Malus xiaojinensis and Citrus junos. Chonogqing:Southwest University,
  [29] Li Yu-na. 2016. Mechanism of NO-mediated in response to iron deficiency of the Malus Xiaojinensis [M. D. Dissertation]. Yaan:Sichuan Agricultural University
  [30] Liang Sen-lin,Dang Jiang-bo,Liang Guo-lu,Guo Qi-gao. 2018. Meiosis observation and fertility analysis in natural tetraploid loquat of‘B431’. Acta Horticulturae Sinica, 45(10):1895 - 1904.
  [31] Liu Dan-dan. 2012. Analysis on apomixis development and genetic characteristics of Malus hupehensis Redh. var. pingyiensis and functional identification of related genes[Ph. D. Dissertation]. Taian:Shandong Agricultural University. (in Chinese)
  [32] Liu Qing-zhong,Wang Xia-li. 2000. New clonal dwarf cherry rootstock- ‘Gisela’. Deciduous Fruits,32 (3):18 - 20. (in Chinese)
  [33] Liu Qing-zhong,Zhao Hong-jun,Li Zhi-qiang. 2001. Plant regeneration from in vitro leaves of cherry dwarf rootstock. Journal of Fruit Science,18 (5):255 - 257. (in Chinese)
  [34] Liu Qing-zhong,Zhang Li-si,Li Bo,Wei Hai-rong,Ai Cheng-xiang,Zhao Hong-jun. 2006. A new cherry dwarf rootstock variety ‘Jisaila 6#’. 33 (1):213. (in Chinese)
  [35] Liu Wei. Functional research of ethylene response fator ERF4/ERF72 involved in iron deficiency responseof apple rootstocks [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [36] Madlung A,Tyagi A,Watson B,Jiang H,Kagochi T,Doerge R W,Martienssen R,Comai L. 2005. Genomic changes in synthetic Arabidopsis polyploids. The Plant Journal,(41):221 - 230
  [37] Masterson J. 1994. Stomatal size in fossil plants:evidence for polyploidy in majority of angiosperms. Science,264 (5157):421 - 424.
  [38] Meng H B,Jiang S S,Hua S J,Lin X Y,Li Y L,Guo W L,Jiang L X. 2011. Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.):the adaptation to salinity stress. Journal of Integrative Agriculture,10 (3):363 - 375.
  [39] Mertten D,Tsang G K,Manako K I,McNeilage M A,Datson P M. 2012. Meiotic chromosome pairing in Actinidia chinensis var. deliciosa. Genetica 140 (10-12):455 - 462.
  [40] Motosugi H,Okudo K,Kataoka D,Naruo T. 2002. Comparison of growth characteristics between diploid and colchicine-induced tetraploid grape rootstocks. Journal of the Japanese Society for Horticultural Science,71 (3):335 - 341.
  [41] Motosugi H, Naruo T. 2003. Production of triploid grape rootstocks by embryo culture and their growth characteristics. Journal of the Japanese Society for Horticultural Science,72(2):107 - 115.
  [42] Motosugi H,Yamamoto Y,Naruo T,Yamaguchi D. 2007. Growth and fruit quality of ‘Kyoho’ grapevines grafted on autotetraploid rootstocks. Journal of the Japanese Society for Horticultural Science,76 (4):271 - 278.
  [43] Mouhaya W,Allario T,Costantino G,Andres F,Talon M,Luro F,Ollitrault P,Morillon R. 2008. Citrus tetraploid rootstocks are more tolerant to salt stress than diploid. Modern variety breeding for present and future needs//18th EUCARPIA General Congress, Valencia, Spain. Universidad Politécnica de Valencia. s.l. : s.n., Résumé, 439.
  [44] Niu Zi-mian,Liang De-sheng. 1991. A study on the correlation between ABA content and growth and development of apple rootstock. Journal of Beijing Forestry University,13 (3):50 - 55.
  [45] Oustric J,Morillon R,Luro F,Herbette S,Lourkisti R,Giannettini J,Berti L,Santini J. 2017. Tetraploid Carrizo citrange rootstock (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) enhances natural chilling stress tolerance of common clementine (Citrus clementina Hort. ex Tan). Journal of Plant Physiology,(214):108 - 115.
  [46] Pan Hai-fa. 2015. Preliminary study on iron transport mechanism of MxNRAMP1protein in Malus Xiaojinensis [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [47] Pikaard C S. 2001. Genomic change and gene silencing in polyploids. Trends in Genetics,17 (12):675 - 677.
  [48] Podda A,Checcucci G,Mouhaya W,Centeno D,Rofidal V,Del Carratore R,Luro F,Morillon R,Ollitrault P,Maserti B E. 2013. Salt-stress induced changes in the leaf proteome of diploid and tetraploid mandarins with contrasting Na+, and Cl?, accumulation behaviour. Journal of Plant Physiology,170 (12):1101 - 1112.
  [49] Rao Jing-yun,Liu Yi-fei,Huang Hong-wen. 2012. Analysis of ploidy segregation and genetic variation of progenies of different interploidy crosses in Actinidia chinensis. Acta Horticulturae Sinica,39 (8):1447 - 1456. (in Chinese)
  [50] Ruiz M,Pina J A,Alcayde E,Morillon R,Navarro L,Primo-Millo E. 2012. Behavior of diploid and tetraploid genotypes of ‘Carrizo’ citrange under abiotic stress//ISHS Acta Horticulturae 1065:XII International Citrus Congress - International Society of Citriculture.
  [51] Ruiz M,Qui?ones A,Martínez-Alcántara B,Aleza P,Morillon R,Navarro L,Primo-Millo E,Martínez-Cuenca M R. 2016a. Tetraploidy enhances boron-excess tolerance in ‘Carrizo’ citrange (Citrus sinensis L. Osb. ×Poncirus trifoliate L. Raf). Frontiers in Plant Science,7 (e1000492).
  [52] Ruiz M,Quinones A,Martínez-Alcántara B,Aleza P,Morillon R,Navarro L,Primo-Millo E,Martínez-Cuenca M R. 2016b. Effects of salinity on diploid (2x) and doubled diploid (4x) Citrus macrophylla,genotypes. Scientia Horticulturae,(207):33 - 40.
  [53] Ruiz M, Qui?ones A, Martínez-Cuenca M R, Aleza P, Morillon R, Navarro L, Primo-Millo E, Martínez-Alcántara B. 2016c, Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings. Journal of Plant Physiology, 205:1-10.
  [54] Saleh B,Allario T,Dambier D,Ollitrault P,Morillon R. 2008. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes Rendus Biologies,331 (9):703 - 710.
  [55] Shahid M A,Balal R M,Khan N,Zotarelli L,Liu G, Ghazanfar M U,Rathinasabapathi B,Mattson N S,Martínez-Nicolas J J,Garcia-Sanchez F. 2018a. Ploidy level of citrus rootstocks affects the carbon and nitrogen metabolism in the leaves of Chromium-stressed Kinnow mandarin plants. Environmental and Experimental Botany, 149:70-80.
  [56] Shahid M A, Balal R M, Khan N, Rossi L, Rathinasabapathi B, Liu G, Khan J, Cámara-Zapata J M, Martínez-Nicolas J J, Garcia-Sanchez F. 2018b. Polyamines provide new insights into the biochemical basis of Cr-tolerance in Kinnow mandarin grafted on diploid and double-diploid rootstocks. Environmental and Experimental Botany, 156:248-260.
  [57] Shi Yan-yu,Geng Xiao-juan,Yang Jing-hui,Zhang Chao,Chen Long,Yao Zong-guo. 2015. Impact of different containers on root architecture of poplar cuttings. Tianjin Agricultural Sciences,21 (2):104 - 107. (in Chinese)
  [58] Sugiyama S I. 2005. Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Annals of Botany,96(5):931 - 938.
  [59] Sun Chao-hua. Study on the role of reactive oxygen species (ROS) in iron deficiency response of Malus Xiaojinensis [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [60] 孫朝華. 2017. 活性氧在小金海棠缺鐵應答中的作用研究[博士論文]. 北京:中國農業大學.
  [61] Tan F Q,Tu H,Liang W J,Long J M,Wu X M,Zhang H Y,Guo W W. 2015. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (Citrus junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. Bmc Plant Biology,15 (1):89.
  [62] Tsukaya H. 2008. Controlling size in multicellular organs: focus on the leaf. PLoS Biology,6 (7):1373 - 1376.
  [63] Tsukaya H. 2013. Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics. PloS One,8 (12):e83729.
  [64] Udall J A,Wendel J F. 2006. Polyploidy and crop improvement. Crop Science,46 (Supplement 1):S3 - S14.
  [65] Vergara R, Noriega X, Aravena K, Prieto H,Pérez F J. 2017. ABA represses the expression of cell cycle genes and may modulate the development of endodormancy in grapevine buds. Frontiers in Plant Science,(8):812.
  [66] Vieira D D S S,Emiliani G,Michelozzi M,Centritto M,Luro F,Morillon R,Loreto F,Gesteira A S,Maserti B E. 2016. Polyploidization alters constitutive content of volatile organic compounds (VOC) and improves membrane stability under water deficit in Volkamer lemon (Citrus limonia Osb.) leaves. Environmental & Experimental Botany,126 (20):1 - 9.
  [67] Vujovi? T, Cerovi? R, Ru?i? D. 2012. Ploidy level stability of adventitious shoots of sour cherry ‘?a?anski Rubin’ and Gisela 5 cherry rootstock. Plant Cell Tissue & Organ Culture, 111(3):323-333.
  [68] Wang Jingying. 2006. Identification of Fe-efficiency related proteins induced by iron deficiency stress from roots of Malus xiaojinensis. Beijing:China Agricultural University.
  [69] Wang Shao-jia. Study on genes related to iron deficiency stress of Malus Xiaojinensis based on transcriptome sequencing [Ph. D. Dissertation]. Beijing:China Agricultural University.
  [70] Webster T,Tobutt K,Evans K. 2000. Breeding and evaluation of new rootstocks for apple, pear and sweet cherry. Compact Fruit Tree,33 (4):100 - 104.
  [71] Wood T E,Takebayashi N,Barker M S,Mayrose I,Greenspoon P B,Rieseberg L H. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America,106 (33):13875 - 13879.
  [72] Wu J H,Datson P M,Manako K I,Murray B G. 2014. Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis. Theoretical & Applied Genetics,127 (3):549 - 557.
  [73] Xue Hao,Zhang Feng,Zhang Zhi-hong,Fu Jun-fan,Wang Feng,Zhang Bing,Ma Yue. Differences in salt tolerance between the diploid and autotetraploid ‘Hanfu’ apple. Acta Horticulturae Sinica,42 (5):826 - 832. (in Chinese)
  [74] Yan Shu-tang,Xu Ji-zhong. The effects of different dwarfing interstocks on the endogenous hormones, polyamines and cell division in fruits of red Fuji apple. Acta Horticulturae Sinica,32 (1):81 - 83. (in Chinese)
  [75] Yao C,Finlayson S A. 2015. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiology. 169 (1):611-626.
  [76] Yu Jun,Wang Yi,Wu Ting,Zhang Xin-zhong,Han Zhen-hai. Evaluation of Golden Delicious/Chistock 1 on resistance to low iron stress. Acta Horticulturae Sinica,42 (4):769 - 777.
  [77] Zhang Qiang,Wei Qin-ping,Liu Song-zhong,Wang Xiao-wei,Shang Zhi-hua,Lu Jin-jin. 2013. Formation of canopy structure, yield and fruit quality of 'Fuji' apple with SH6 dwarf interstock from juvenility to fruiting early stage. Scientia Agricultura Sinica,46 (9):1874 –1880. (in Chinese)

重要提示:轉載本站信息須注明來源:原創論文網,具體權責及聲明請參閱網站聲明。
閱讀提示:請自行判斷信息的真實性及觀點的正誤,本站概不負責。
体育彩票走势图排五 官方快3app 北京时时彩预测 500元 倍投方案 稳赚 彩票开奖结果走势图 双色球胆拖投注表图 天津快乐10分开奖记录 1选五稳赚技巧 怎么炼药赚钱 pk10计划群稳赚 福利彩票任三技巧 2018做什么小本生意赚钱 乒乓球比赛比分计算 北京pk赛车官网北京 云南棋牌一元入场十元提现 天天捕鱼最新版应用 群pk10在线计划